公司新闻
公司新闻

5G技术的出现对高校物联网能源管理云平台会产生什么蝴蝶效应?

发布时间2024-07-04        浏览次数:61

易允恒

安科瑞电气股份有限公司 上海嘉定 201801

摘要:高校作为大规模能源消费端,存在电力管理手段欠缺导致能源严重浪费的问题,可通过加强能源电力管理和数字技术的融合力度,综合运用物联网、云计算、AI人工智能等数字化手段,提升运营效率和综合管控水平,从而实现能源电力管控创新。对5G组网及物联网平台建设进行研究探索,提出一种适用于高校场景的基于5G校园混合专网的物联网能

源电力管理平台,提出面向高校四大用能场景的针对性节能策略与方案,展望高校绿色节能发展方向。

关键词:5G;校园混合专网;物联网;能源电力管理平台

0引言

我国2020年能源消费量占全球能源消费总量的26%,在电力领域,我国2020年电力消费总量约占同期全球消费量29%。能量消耗高速增长,传统粗放的能源电力管理模式已经无法满足当前社会需求,节能降耗面临严峻的考验,在全球“双碳”大背景下,能源电力转型势在必行。在用电消费端,高校人流量大、用电要素复杂,在我国总体能源消耗中所占比例较大。我国在校大学生数量仅占全国人口3%,但高校能耗在社会总能耗中的占比高达8%,高校人均用电量是全国人均水平的4倍。同时,校园基础能耗设施陈旧,能源电力管理粗放问题突出,校园节能领域存在巨大提升空间,具有迫切的改造需求。目前,随着技术水平发展,物联网技术在智能电网、楼宇能耗监控领域已有广泛应用,可以提供精细化管理、信息数据采集、设备设施效率提升、低碳节能运行以及公共服务均等化和普惠化方面的有力支撑。为此,从校园节能减排目标入手,利用“5G+物联网”构建高校能源感知网络,结合校园已有能耗设施现状,建立有效的能源电力监控与管理应用。

1高校能源电力管理现状分析

1.1高校能耗特征分析

高校建筑类型多,不仅有教学楼、科研楼、行政52办公楼等公共建筑,还有宿舍楼、食堂、浴室等生活建筑,建筑类型的多样化必然导致能耗种类的多样化。

高校电力能耗具有明显的季节性。由于高校在1月下旬到2月中旬和7月上旬到8月下旬放寒、暑假,校园能耗会明显下降,而1月是一年中的*冷月,7月、8月是一年中的*热月,能耗量会明显上升。

高校电力能耗集中。高校耗能设施陈旧单一,使用时间相对集中。高校中大部分的建筑耗能设施比较陈旧、简单,而且学生的学习和生活作息具有规律性。

高校电力节能潜力巨大。高校绝大部分都是文化水平较高的教师及学生,素质高、节能意识较强。同时,高校作为教育和科研基地,具有研究、实践新型节能技术的物质和精神基础。

1.25G赋能绿色校园能源电力管理

5G技术在绿色校园领域应用具有三大现实基础:

1)5G技术推动低碳学习生活方式转变。5G泛在实时连接正逐渐改变校园的教学生活方式,线上会议、线上教学、虚拟教学、在线考试等应用正加速推广,可以有效减少师生出行活动产生的能耗与排放。

2)5G技术为校园节能增效“注智赋能”。基于5G、云计算、边缘计算、人工智能等技术,校园可部署能源电力管理平台,实现对水、电、气、热等资源的全面监控,减少物流和能源的碳消耗。利用5G大连接特性,连接电源、建筑等监测点位传感器,实现监测设备信息的实时读取,覆盖能源生产、管控、用能三大环节,打造能源数据感知、能源优化服务、能源综合管控的全链条闭环服务体系。

3)5G技术助力碳达峰、碳中和人才培养。5G网络的深度覆盖将赋能校园数字化转型,驱动低耗、环保的绿色智慧校园研究与发展。结合碳达峰、碳中和发展需求,创新绿色人才培养模式,引领未来低碳技术发展,打造专业人才培养体系。

2高校物联网能源电力管理平台

2.1建设思路

2010年来,各种新兴技术进入高速发展期,随着我国5G正式大规模商用,大数据、互联网+、人工智能、云计算等前沿技术得到充分整合和运用,在电力、教育等行业取得重大进展和广泛应用。与此同时,国家节能减排相关政策陆续出台、落地,各大高校对于校园能源电力管理提出了高的要求。

据统计,截至2022年5月31日,全国高等学校共计3013所,本科院校1270所,专科院校1489所,如图1所示。85%以上的高校已有10年以上的存续历史。各大高校现有建筑建设年限较为久远,直接导致校园建设整体信息化、智能化水平偏低,与能源电力管理相关的终端设备往往不具备智能采集、控制功能以及数据上传的网络链路。因此,在进行能源电力管理平台整体规划建设过程中除了需要考虑终端设备的智能化升级外,还需要考虑传输网络的整体建设。

1710124409697

有线网络传输包括采用光纤、铜缆等固定网络传输形式,在高校的能源电力管理平台建设上存在布线困难、施工周期较长等客观突出问题,很难形成规模化、标准化的应用,难以推广。相比之下,基于物联网技术应用的无线传输网络则可很大程度满足高校能源电力管理平台的需求,具有施工简单、无须布线、即插即用等优势。同时各类物联网终端设备均可通过物联网管理平台统一监控、统一管理。

无线传输可采用第五代移动通信技术(5thgenerationmobilecommunicationtechnology,5G)、ZigBee无线通信技术(ZigBeewirelesscommunication

technology,ZigBee)、LoRa无线通信技术(LoRawirelesscommunicationtechnology,LoRa)、无线保真技术(wirelessfidelity,WiFi)等多种形式,如表1所示,在高校等园区领域选用5G传输具有以下优势:

1)传输速率高,5G传输峰值速率高达20Gbit/s,与WiFi、LoRa等传输速率相比有几十乃至数百倍的提升,可以好支持电子班牌、摄像头等具有高传输速率需求的终端设备;

2)建设难度低,采用5G传输,只需要部署核心网用户面网元(userplanefunction,UPF)至高校运营商机房,便可共用运营商在高校已部署的5G公共基站,搭建5G混合专网。采用其他方式传输,则需要在高校部署无线基站/网关并为其供电、联网,同样需要在办公区、教学区进行布线、安装等一系列施工工序,与采用有线传输无本质区别。

基于上述分析,采用5G技术搭建高校物联网能源电力管理平台为贴合我国高校现有实际情况。通过校园5G专网,利用物联网技术将与能源电力管理有关的全部物联感知终端以及智能化系统进行集成,如图2所示,有机衔接信息资源、设备状态和业务事件,打造在异构子系统之间跨越各应用系统边界的统一管理平台。

建设高校物联网能源电力管理平台,旨在消除“信息孤岛”,将原本孤立、封闭的子系统纵向解耦,消除应用与终端设备的强绑定关系。利用平台横向整合,打破子系统间的壁垒,由校园物联网能源电力管理平台进行统一调配管控,实现针对特定高校节能场景的跨系统联动。由此改善教室、图书馆、宿舍等场所能耗浪费现象,提高校园整体的能源利用效率。

2.2整体架构

高校物联网能源电力管理平台采用标准的物联网三层架构,整体架构自下而上由物联感知层、网络传输层和平台应用层组成,如图3所示。

物联感知层运用传感和识别技术将物理世界中的各类物理量转化成可供处理的数字信号,负责实现对物理世界的智能感知识别、信息采集处理和自动控制,并通过通信模块将物理实体连接到网络传输层和平台应用层。

网络传输层主要用于数据信息和控制信息的双向传递、路由和控制,实现硬件世界与应用生态的数据互联,支持多数据源、多目标、多种协议的信息传输,网络传输层可采用公共的运营商网络和互联网,也可以依托行业专用通信网络。平台应用层综合运用高性能计算、人工智能、数据库和模糊计算等技术,对终端设备数据进行存储、查询、分析、挖掘、理解,并基于终端设备数据进行节能决策和行为控制。

2.2.1物联感知层

5G技术的融合应用可以提供可靠、稳定、高效的互联网通信,为高校用电端设备通信,特别是无线通信提供。保障根据高校物联网能源电力管理平台采用校园5G专网的整体架构要求,所有物联感知层传感器、执行器均选用具有5G模组的设备。对于不具有5G模组的终端设备,可采用5G客户前置终端设备(customerpremiseequipment,CPE)将设备接入校园5G专网。CPE可以把运营商移动网络信号转化为宽带网络和Wi-Fi,同时具有无线路由器的功能,能够用有线/无线的方式为终端设备提供宽带网络连接和无线网络连接。

2.2.2网络传输层

网络传输层5G组网形式区分如图4所示,根据高校运营商基站建设实际情况,网络传输层采5G混合网络组网形式。以运营商建设的校内5G基站为基础,运用5G数据切片技术,共用已有5G基站,同时部署私有化的UPF,构成5G公网和校园5G专网并行的5G混合专网,如图5所示。

UPF作为移动锚点,负责分组路由、转发、包检测及策略执行、流量上报等功能,并负责计费报告生成,满足高校对于边缘网络及业务能力的需求。

接入和移动性管理功能(accessandmobilitymanagementfunction,AMF)用于注册、连接、可达性及移动性管理,完成用户的接入认证和鉴权。

会话管理功能(sessionmanagementfunction,SMF)提供会话管理、IP地址分配、策略执行、计费等功能。

在5G混合专网的基站共享模式下,无线基站对终端设备规划专有标识。AMF负责根据各类终端的切片标识进行接入认证和鉴权,归属校园5G专网的终端无法接入5G公网数据业务,从而为高校构建一张增强带宽、低时延、核心数据不出校园的基础连接网络。通过核心网络的本地部署+空口预调度技术,有效提升端到端时延指标,网络端到端时延小于15ms,部分场景下时延小于10ms。

物联网终端设备对于通信网络的需求体现在以下3个方面:

1)可靠性需求。终端设备数据采集的可靠性要求99.9%,设备控制则需要达到99.999%。利用5G的多输入多输出(mutiple-inputmultiple-output,MIMO)技术,在发送端和接收端建立多个天线,可以很大程度优化数据通信的基本质量。

2)实时性。物联网能源电力管理平台需要监控用电终端设备运行状态,并在优化计算后及时生成调节指令,下发指令数据对实时性有较高要求,关键控制指令时延要求达到毫秒级。

3)高带宽。视频类终端设备的4K/8K高清图像、多屏多视角、自由视角、VR互动等功能对于通信网络有着较高需求,采用不同5G切片技术所得指标如图6所示,物联网终端设备对网络传输具体性能要求如表2所示。

2.2.3平台应用层

高校物联网能源电力管理平台全量接入物联感知层的传感器/执行器,具有消息队列遥测传输协议(messagequeuingtelemetrytransportprotocol,MQTT)、受限制的应用协议(constrainedapplicationprotocol,CoAP)、物联网的轻量级协议(lightweightmachinetomachine,LwM2M)、超文本传输协议(hypertexttransferprotocol,HTTP)、超文本传输安全协议(hypertexttransferprotocoloversecuresocketlayer,HTTPS)等多种应用层物联网协议接入能力,既满足设备状态监控等长连接的实时性需求,也满足远程抄表等短连接的低功耗需求。

MQTT协议:平台支持设备使用MQTT协议接入。MQTT是基于TCP/IP协议栈构建的异步通信消息协议,是一种轻量级的发布/订阅信息传输协议。MQTT在时间和空间上,将消息发送者与接受者分离,可以在不可靠的网络环境中进行扩展。适用于设备硬件存储空间有限或网络带宽有限的场景。

CoAP/LwM2M协议:平台支持CoAP/LwM2M协议连接通信。CoAP协议适用在资源受限的低功耗设备上使用,LwM2M是基于传输层CoAP协议的应用层协议,该协议是由开放移动联盟(openmobilealliance,OMA)提出并定义的适用于资源有限的终端设备管理的轻量级物联网协议,聚焦于低功耗广覆盖物联网市场,是一种可在全球范围内广泛应用的新兴技术。HTTP协议:平台支持HTTP协议规范。

TCP协议:平台支持TCP协议直接接入,可通过数据解析,使用自定义脚本的方式完成对设备数据的解析。

平台对终端设备进行从接入平台时起,直至设备坏损停止运行的“全生命周期管理”。平台搭建包括能耗分析、能耗预测、能耗预警在内的多种能耗数据应用模型,对收集的数据进行存储、分析,对能耗提供数据分析和数据可视化等数据服务,为节能决策提供支撑。

3能源电力管理平台功能模块设计

3.1能源电力管理设计思路

如图7所示,高校用电按照功能可划分为:电教功能设备用电、负载/插座用电、暖通空调用电以及照明/动力设备用电4类。针对这4类用电的自身属性以及高校各区域潮汐式用电的独有特点,聚焦这4类用电场景中的重点项目进行能源电力管理模块设计,主要包括电子班牌控制模块,对日常负载用能设备进行管理的电力监测、计量模块,暖通空调控制模块,照明控制模块。

3.2电子班牌控制模块设计

高校教室、会议室、图书馆、实验室等场所设置有大量电子班牌设备终端,一旦设备开启,即使无人观看也会一直处于持续播放状态,造成大量能源浪费。高校对此缺乏足够的人力以及信息化管理控制手段对其进行精细化管理,存在很大节能空间。

电教设备控制模块将课程/工作时间表、人体传感器、监控摄像头、个性化策略(重大会议、来访等)等作为条件输入对终端进行状态控制。根据条件输入的不同,能源电力管理平台可根据规划好的策略控制电子班牌的关机、待机、开机。

对电子班牌进行节能控制的关键是对设备周围环境进行探知,判断是否有人正在观看电子班牌,在无人使用情况下将电子班牌显示屏关闭,设为待机状态。为保证学生、教师在远距离观察时,电子班牌显示屏可以保持开启状态,不影响使用体验,设计采用2种方式进行人体感知:

1)监控摄像头。对于设有监控摄像头的区域,可采用AI人体识别与虚拟电子围栏相结合的方式进行判别,将虚拟电子围栏区域与电子班牌设备终端绑定,有人进入围栏区域,则自动将电子班牌从待机状态切换至正常开机状态。

2)人体传感器。对于未设置监控摄像头的区域,可现场安装5G人体传感器,人体传感器采用热释电传感技术,热释电元件受人体红外线辐射后,会产生热释电,经过放大器放大后,引起输出电压变化。能源电力管理平台接收信号后联动该人体传感器周遭电子班牌从待机状态切换至正常开机状态。

3.3电力监测、计量模块设计

电力检测、计量功能模块的设计主要基于两个方面进行考量。一方面是高校学生经常性违反学校规定私拉电线、使用大功率电器(热得快、电饭煲、电热毯等)。这类行为导致电力线路频繁过载、加速老化,留下严重火灾隐患,需要在上述不文明用电行为发生时能够迅速判断发现问题,并通知校内工作人员予以制止。另一方面,对于不会直接影响校园电网运行的浪费用电行为,需要利用数字化、信息化、智慧化的手段进行数据分析,发现并杜绝相应行为。

电力检测、计量功能模块遵循细化数据采集颗粒度与按需配置终端相结合的设计原则,如图8所示,在高校的各高压配电柜(35kV以下)、低压配电柜(380V)、楼层配电箱(380V、220V)以及宿舍楼的各个宿舍回路设置5G电力计量终端,如图9所示,对电流、电压、功率因数、电弧、温度、电量等状态进行实时采集。电力计量终端5G通信模块通过5G网络与用采/计量主站连接,可以实现数据的远程采集及参数的远程下发等功能,符合电网企业计量终端标准。利用5G网络特性,丰富抄表内容,提升抄表频次,以此增强能源电力管理精细度。

能源电力管理平台运用AI智能分析技术实时分析终端数据,及时发现回路漏电、过压、过载、短路、三相不平衡等问题,及时采用灭弧、断点等手段进行电路保护。同时在工作站和相应管理人员手持终端上进行事故报警,安排人员及时到场处置处理。

此外,能源电力管理平台运用大数据分析技术对历史数据进行诊断分析,对于各类故障进行数据统计、对比分析。对于频繁出现故障的区域和回路进行智能识别,提醒工作人员现场检查是否存在使用大功率电器等行为,将被动防御转换为主动预防。同时平台对同类型区域进行归类汇总(如同面积同居住人数的学生宿舍),横向对比能耗指标,对于用电数据异常以及用电严重超标的区域进行检查,降低校园整体能耗水平。

3.4暖通空调控制模块设计

暖通空调控制模块在设计过程中充分考虑高校中教学楼、图书馆、宿舍楼等功能性建筑鲜明的潮汐人流特点。建筑内人流量随时间变化存在峰谷值,人体散热以及人群活动造成场所内温度波动,而仅通过传感器进行温度调节存在滞后性。温度过度调节/滞后调节不仅给教师、学生带来体感不适,同时造成了能源浪费。

暖通空调控制模块主要由终端传感器采集室内温度数据,同时结合高校各区域潮汐人流的特点,运用大数据和AI智能分析的手段进行节能策略制定,一方面减少建筑人流低谷时段设备的运行功耗、待机功耗以及空转功耗;另一方面提前预知人流高峰,根据教学楼、图书馆、宿舍楼等建筑的不同特点制定温度控制时间表,对上述建筑物实施分时、分区供冷供热。

由AI智能分析算法根据该区域温度与时间的对应关系制定空调机组*佳启/停时间、焓值切换模式、机组组合群控模式等。为保证空调机组设备的使用寿命、避免不正确操作造成设备损坏,系统设计设备保护功能,限定规定时间中设备的启/停次数,并且可对设备设置启/停延时。

3.5照明控制模块设计

照明控制模块运用5G+物联网技术,通过设置前端人体红外、光敏传感器及视频监控摄像头实时掌握照明区域的人流情况、自然光照情况,并在照明灯具上配置灯光控制器,实现高校建筑内灯光照明的开关控制、调光控制以及监测计量。

照明控制模块采用“按需照明”的节能照明策略,将自然照明条件、环境情况、人员照明实际需求相结合,具有多种工作模式,有效增加能源的利用率,使高校照明系统节能、高效。

4安科瑞高校综合能效解决方案

4.1校园电力监控与运维

集成设备所有数据,综合分析、协同控制、优化运行,集中调控,集中监控,数字化巡检,移动运维,班组重新优化整合,减少人力配置。

4.2后勤计费管理

采用的网络抄表付费管理技术,实现电、水、气等能源综合计费,实现远程抄表、费率设置、账单统计汇总等,支持微信、支付宝、一卡通等充值支付方式,可设置补贴方案。通过能源付费管理方式,培养用能群体和部门的节能意识。

4.2.1宿舍用电管理

针对学生宿舍用电进行管理控制:可批量下发基础用电额度和定时通断功能;可进行恶性负载识别,检测违规电气,并可获取违规用电跳闸记录。

16611734504981661173519739

4.2.2商铺水电收费

针对校园超市、商铺、食堂及其他针对个体的水电用能进行预付费管理。

4.2.3充电桩管理平台

充电桩在“源、网、荷、储、充”信息能源结构中是必不可缺的。充电桩应用管理同样是校园生活服务中必不可缺的一部分。

16611758520841661175918505

4.2.4智能照明管理

通过对高校路灯的全局监测,提供对路灯灵活智能的管理,实现校园内任一线路,任一个路灯的定时开关、强制开关、亮度调节,以及定时控制方案灵活设置,确保路灯照明的智能控制和高效节能。

C:/Users/18702/AppData/Local/Temp/picturecompress_20220822214933/output_1.pngoutput_1

4.3能源管理系统

针对校园水、电、气等各类接入能源进行统计分析,包含同比分析、环比分分析、损耗分析等。了解用能总量和能源流向。

按校园建筑的分类进行采集和统计的各类建筑耗电数据。如办公类建筑耗电、教学类建筑耗电、学生宿舍耗电等,对数据分门别类的分析,提供领导决策,提高管理效能。

构建符合校园节能监管内容及要求的数据库,能自动完成能耗数据的采集工作,自动生成各种形式的报表、图表以及系统性的能耗审计报告,能够监测能耗设备的运行状态,设置控制策略,达到节能目的。

4.4智慧消防系统

智慧消防云平台基于物联网、大数据、云计算等现代信息技术,将分散的火灾自动报警设备、电气火灾监控设备、智慧烟感探测器、智慧消防用水等设备连接形成网络,并对这些设备的状态进行智能化感知、识别、定位,实时动态采集消防信息,通过云平台进行数据分析、挖掘和趋势分析,帮助实现科学预警火灾、网格化管理、落实多元责任监管等目标。实现了无人化值守智慧消防,实现智慧消防“自动化”、“智能化”、“系统化”需求。从火灾预防,到火情报警,再到控制联动,在统一的系统大平台内运行,用户、安保人员、监管单位都能够通过平台直观地看到每一栋建筑物中各类消防设备和传感器的运行状况,并能够在出现细节隐患、发生火情等紧急和非紧急情况下,在几秒时间内,相关报警和事件信息通过短信、语音、邮件提醒和APP推送等手段,就迅速能够迅速通知到达相关人员。

5.平台部署硬件选型

5.1电力监控与运维平台

应用场合

产品

型号

功能

变电所运维云平台

AcrelCloud-1000

AcrelCloud-1000变电所运维云平台基于互联网+、大数据、移动通讯等技术开发的云端管理平台,满足用户或运维公司监测众多变电所回路运行状态和参数、室内环境温湿度、电缆及母线运行温度、现场设备或环境视频场景等需求,实现数据一个中心,集中存储、统一管理,方便使用,支持具有权限的用户通过电脑、、PAD等各类终端链接访问、接收报警,并完成有关设备日常和定期巡检和派单等管理工作。

智能网关

7139f12e07361e836aa17232f4cee88

Anet系列

8个RS485串口2kV隔离,2个以太网接口,支持ModbusRTU、IEC-60870-5-101/103/104、CJ/T188、DL/T645等通讯协议设备的接入,支持ModbusRTU、ModbusTCP、IEC-60870-5-104等上传协议、支持多中心不同数据服务要求,支持断点续传,装置电源:220VAC/DC。

ANet

ANet-2E4SM

4路RS485串口,光耦隔离,2路以太网接口,支持ModbusRtu、ModbusTCP、DL/T645-1997、DL/T645-2007、CJT188-2004、OPCUA、ModbusTCP(主、从)、104(主、从)、建筑能耗、SNMP、MQTT;(主模块)输入电源:DC12V~36V。支持4G扩展模块,485扩展模块,可扩展16路。

10KV进/馈线

AM5SE

AM6-L

相间电流速断保护,相间限时电流速断保护(可带低压闭锁),相间过电流保护(可带低压闭锁),两段式零序过流保护,反时限相间过流保护(可带低压闭锁),零序反时限过流保护,过负荷保护,控制回路异常告警。

10/0.4KV变压器

AML-S

分合闸位置、手车工作/试验位置、接地刀闸位置、硬接点信号(保护跳闸、装置告警、控制回路断线、装置异常、未储能、事故总等)、报文(过流、过负荷、超温报警、过温报警、装置告警、PT断线、CT断线、对时异常等)、遥控开关、故障波形分析(故障录波、故障波形、故障记录、跳闸、故障电流电压)等。

35kV/100kV/6kV

间隔智能操控、

35kV/10kV/

6kV传感器

ASD320

ASD500

一次回路动态模拟图、弹簧储能指示、高压带电显示及闭锁、验电、核相、自动温湿度控制及显示(标配一路强制加热)、远方/就地旋钮、分合闸旋钮、储能旋钮、人体感应、柜内照明控制、RS485接口、高压柜内电气接点无线测温。

35kV/10kV/

6kV传感器

00c847d7cad888672b40e9de77f7a18

 

合金片固定,CT感应取电,启动电流大于5A,测温范围-50-125℃,测量精度±1℃;无线传输距离空旷150米;

35kV/10kV/6kV

间隔电参量测量

产品

APM810

三相(I、U、kW、kvar、kWh、kvarh、Hz、cosΦ),零序电流In;四象限电能;实时及需量;电流、电压不平衡度;负载电流柱状图显示;66种报警类型及外部事件(SOE)各16条事件记录,支持SD卡扩展记录;2-63次谐波;2DI+2DO

RS485/Modbus;LCD显示;

变压器接头测温低压进出线柜接头测温

a448bd195c64c52c0ec60e59c912905

ARTM-Pn

可至多配套60个ATE400测温传感器,无线温度传感器ATE400适用于手车式动触头,电缆与母排搭接处,隔离刀闸搭接处等电气搭接点的温度测量,采用捆绑式安装。可使用ATC-400无线测温接收器接收数据。该终端可单独安装在高压柜、低压抽屉柜内。

中低压回路

产品

WHD72-11

WHD温湿度控制器产品主要用于中高压开关柜、端子箱、环网柜、箱变等设备内部温度和湿度调节控制。工作电源:AC/DC85~265V工作温度:-40.0℃~99.9℃工作湿度:0RH~99RH

ADW300

三相电参量U、I、P、Q、S、PF、F测量,有功电能计量(正、反向)、四象限无功电能、总谐波含量、分次谐波含量(2~31次);A、B、C、N四路测温;1路剩余电流测量;支持RS485/LoRa/2G/4G/NB;LCD显示;有功电能精度:0.5S级(改造项目推荐)

DTSD1352

三相电参量U、I、P、Q、S、PF、F测量,分相总有功电能,总正反向有功电能统计,总正反向无功电能统计;红外通讯;电流规格:经互感器接入3×1(6)A,直接接入3×10(80)A,有功电能精度0.5S级,无功电能精度2级

5.2后勤计费管理

5.2.1宿舍/商业预付费平台

应用场景

型号

图 片

保护功能

预付费云平台

AcrelCloud-3200

IMG_257

系统为B/S架构,主要包括前端管理网站和后台集抄服务,配合公司的预付费电表DDSY1352和DTSY1352系列以及多用户计量箱ADF300L系列,实现电能计量和电费管理等功能。另外可以选配远传阀控水表组成水电一体预付费系统,达到先交费后用水的目的,剩余水量用完自动关阀。

智能数据采集

Anet系列

8个RS485串口2kV隔离,2个以太网接口,支持ModbusRTU、IEC-60870-5-101/103/104、CJ/T188、DL/T645等通讯协议设备的接入,支持ModbusRTU、ModbusTCP、IEC-60870-5-104等上传协议、支持多中心不同数据服务要求,支持断点续传,装置电源:220VAC/DC。

ANet-2E4SM

ANet

4路RS485串口,光耦隔离,2路以太网接口,支持ModbusRtu、ModbusTCP、DL/T645-1997、DL/T645-2007、CJT188-2004、OPCUA、ModbusTCP(主、从)、104(主、从)、建筑能耗、SNMP、MQTT;(主模块)输入电源:DC12V~36V。支持4G扩展模块,485扩展模块,可扩展16路。

ABox5000

多路RS485接口,能对多种终端设备进行数据采集

支持网口通过ModbusTcp协议采集其它系统或设备转发的数据提供6路DC12/24V电压输出接口支持4级遥测越限告警,遥信变位告警功能支持断点续传功能,实时检测,防止数据丢失

计量及预付费仪表

DDSY1352-Z

·全电参量测量:U、1、P、Q、S、PF

·预付费功能:可设置欠费蔬闸功能,除欠用电功能

·恶性负数识别,作息时间

·RS-485通讯接口,MODBUS或DL/T645规约

·具有CPA证书

DTSY1352-Z

.全电参量测量:U、1、P、Q、S、PF

·不平衡度、2-31次请波测量

.数据冻结功能

·0.5S级电能计量

·预付费功能

·恶性负载识别,作息时间管理

·RS-485通讯接口,MODBUS或DL/T645规约

·具有CPA证书

ADW300

支持多种通讯方式:支持RS-485,NB-loT、LoRa、WIFI及4G通讯

支持多种规格外置开口式互感器,方便改造项目接线

支持多路DUDO、温度、漏电监测

·具有电能质量分析和需量统计功能

·具有CPA证书

DDSY1352-xDM

一进多出,可实现宿舍照明,插座、空调,卫生间等用电分路计量和控制

·谐波1%(2-42),2%(43-63)

·全电参量测量:U、1、P、Q、S、PF

ABox5000数据融合终端

·预付费功能:基础用电下发

·支持网口通过ModbusTcp协议采集其它系统或设备转发的数据

多路RS485撞口,能对多种终瑞设备进行数据采集

·恶性负载识别:阻性负载识别、相位插座识别、夜间小功率载跳闸记录

·提供6路DC12/24V电压输出接口

·作息时间管理

ADF400系列

支持12路三相或36路单相组合计量,可单三相混用,直接接入与互感器接入混用:

全电参量测量:U、1、P、Q、S、PF

·0.5S级电能计量

·预付费功能

·恶性负载识别,作息时间管理

LXSY系列

预付费功能∶∶先买水后用水,欠费

关闯

远传功能支持总线通讯和物联网

通讯

双显功能电子显示和机械字轮显

阀门自动维护、IP68防防护ENC测试达到国家标准、克服环境

电磁干扰影响,稳定性强

中压产品

AM系列综合保护装置

AM5SE

·具有级强的数据处理,逻辑造算和信息存储能力,可为35kY及以下电压等级的进线,馈线、变压器,高压电动机,高压电容器等对象提供过负荷、低电压、过电压、热过载、非电量等保护功能,防止事故扩大,降低高价值设备损坏的风险。

 

APView500

相电压电流+零序电压零序电流,电压电流不平衡度,有功无功功率及电能、事件告警及故障录波,谐波(电压/电流63次谐波、63组间谐波、谐波相角、谐波含有率、谐波功率、谐波畸变率、K因子)、波动/闪变、电压暂升、电压暂降、电压瞬态、电压中断、1024点波形采样、触发及定时录波,波形实时显示及故障波形查看,PQDIF格式文件存储,内存32G,16D0+22D1,通讯

2RS485+1RS232+1GPS,3以太网接口(+1维护网口)+1USB接口,支持U盘读取数据,支持61850协议。

智能仪表及用电监控装置

APM系列

C:/Users/WANGW/AppData/Local/Temp/picturecompress_20220314141600/output_1.jpgoutput_1

全电量测量,四象限电能,复费率电能,仪表内部温度测量,总有功、总无功、总视在电能脉冲输出、秒脉冲等可选。三相电流、有功功率、无功功率、视在功率实时需量(包含时间戳)。电流、线电压、相电压、有功功率、无功功率、视在功率、功率因数、频率、电流总谐波、电压总谐波的本月值和上月值(包含时间戳)。中文显示,有功电能0.2s级。通讯方式:RS485,Prifibus-DP、以太网

AEM系列

https://ss0.baidu.com/6ONWsjip0QIZ8tyhnq/it/u=3685906211,2570410042&fm=199&app=68&f=JPEG?w=750&h=750&s=CFB0AC4406261EAE8D0390110300D0E9

三相电力参数测量、电压和电流的相角、四象限电能计量、复费率、需量、历史电能统计、开关量事件记录、历史值记录、31次分次谐波及总谐波含量分析、分相谐波及基波电参量(电压、电流、功率)、开关量、报警输出

通讯方式:RS485接口,支持Modbus-RTU协议

ARCM系列

ARCM系列电气火灾探测器可对配电回路的剩余电流、导线温度等火灾危险参数实施监控和管理,集成度高,体积小巧,安装方便,防范因泄漏电流而导致的电气火灾.

5.2.2充电桩管理平台

应用场景

型号

图 片

保护功能

充电桩管理平台

AcrelCloud-9000

50cdf54b5ef46cfa13c51a528bb6006

采用泛在物联、云计算、大数据、移动通讯、智能传感等技术手段可为用户提供能源数据采集、统计分析、能效分析、用能预警、设备管理等服务,平台可以广泛应用于多种领域。

新能源汽车充电桩

AEV-AC007D-LCD

输入输出电压:AC220V

1个充电接口,充电线长5米;输出功率7km;扫码、刷卡支付:标

配无线通讯:4G、WIFI、蓝牙三选一(下单备注规格,无备注默认4G

通讯)。

AEV-DC060S

直流60kw双枪一体充电机

AEV-DC120S

直流120kw双枪一体充电机

智能电动车充电桩

ACX10A系列

10路承载电流25A,单路输出电流3A,单回路功率1000W,总功率5500W。充满自停、断电记忆、短路保护、过载保护、空载保护、故障回路识别、远程升级、功率识别、计量、告警上报。

ACX10A-TYHN:防护等级IP21,支持投币、刷卡,扫码、免费充电

ACX10A-TYN:防护等级IP21,支持投币、刷卡,免费充电

ACX10A-YHW:防护等级IP65,支持刷卡,扫码,免费充电

ACX10A-YHN:防护等级IP21,支持刷卡,扫码,免费充电

ACX10A-YW:防护等级IP65,支持刷卡、免费充电

ACX10A-MW:防护等级IP65,仅支持免费充电

ACX2A系列

s2gyPSP3YRaE7C81KkZi4Q

2路承载电流20A,单路输出电流10A,单回路功率2200W,总功率4400W。充满自停、断电记忆、短路保护、过载保护、空载保护、故障回路识别、远程升级、功率识别,报警上报。

ACX2A-YHN:防护等级IP21,支持刷卡、扫码充电

ACX2A-HN:防护等级IP21,支持扫码充电

ACX2A-YN:防护等级IP21,支持刷卡充电

5.2.3智能照明管理

应用场景

产品

型号

功能

普通照明

配电箱

ASL220-S24-16 24路开关驱动器3

ASL220-S

系列

1、ALIBUS总线扩展模块,通信链路供电。

2、功耗:≤5VA

3、4路16A磁保持继电器输出,输出可通过按钮手动控制,输出状态液晶屏显示。

4、2路开关量输入,可接入开关、报警、人体红外感应器等信号。

5、外形尺寸:144mm(W)*90mm(H)*70mm(D)。

6、35mm标准导轨式安装

按键面板

IMG_256

ASL220-F1/2

1联两键

1、ALIBUS总线场景面板,通信链路供电;

2、1联2键轻触按键,多彩背光指示,金、黑、灰可选;

3、每个按键支持长按、短按功能,均可实现开关、调光、场景控制;

4、外形尺寸:86mm(W)*86mm(H)*24mm(D);

5、86底盒安装

探测器

IMG_256

ASL220-PM/T

PIR+照度传感器

1、ALIBUS总线传感器,通信链路供电,功耗:20mA@24V;

2、特殊运算电路,可通过红外感应探测到人体动作;

4、安装方式:嵌入式;

5、外形尺寸:ф80mm*33mm;产品外露尺寸:ф80mm*2.5mm

备用照明

双切箱

IMG_256

ASL210-S

系列

1、ALIBUS总线扩展模块,通信链路供电。

2、功耗:≤3VA

3、4路16A磁保持继电器输出。

4、1路开关量输入,可接入开关、报警、人体红外感应器等信号,1路485通讯。

5、外形尺寸:108mm(W)*90mm(H)*70mm(D)。

6、消防联动启动一般照明(备用照明)。

7、35mm标准导轨式安装

应用场景

产品

型号

功能

普通照明

配电箱

ASL220-S24-16 24路开关驱动器3

ASL220-S

系列

1、ALIBUS总线扩展模块,通信链路供电。

2、功耗:≤5VA

3、4路16A磁保持继电器输出,输出可通过按钮手动控制,输出状态液晶屏显示。

4、2路开关量输入,可接入开关、报警、人体红外感应器等信号。

5、外形尺寸:144mm(W)*90mm(H)*70mm(D)。

6、35mm标准导轨式安装

按键面板

IMG_256

ASL220-F1/2

1联两键

1、ALIBUS总线场景面板,通信链路供电;

2、1联2键轻触按键,多彩背光指示,金、黑、灰可选;

3、每个按键支持长按、短按功能,均可实现开关、调光、场景控制;

4、外形尺寸:86mm(W)*86mm(H)*24mm(D);

5、86底盒安装

探测器

IMG_256

ASL220-PM/T

PIR+照度传感器

1、ALIBUS总线传感器,通信链路供电,功耗:20mA@24V;

2、特殊运算电路,可通过红外感应探测到人体动作;

4、安装方式:嵌入式;

5、外形尺寸:ф80mm*33mm;产品外露尺寸:ф80mm*2.5mm

备用照明

双切箱

IMG_256

ASL210-S

系列

1、ALIBUS总线扩展模块,通信链路供电。

2、功耗:≤3VA

3、4路16A磁保持继电器输出。

4、1路开关量输入,可接入开关、报警、人体红外感应器等信号,1路485通讯。

5、外形尺寸:108mm(W)*90mm(H)*70mm(D)。

6、消防联动启动一般照明(备用照明)。

7、35mm标准导轨式安装

IP网关

IMG_256

ASL200-485-IP

IP协议转换器(ALIBUS<-->TCP/IP)

1、1路ALIBUS通信总线接口。

2、1路RS485

3、1路以太网接口,以太网通讯

4、串口速率1200~115200bps可配置。串口支持标准MODBUS-RTU协议。

5、外形尺:96.6mm(W)*70mm(H)*18mm(D)。

6、35mm标准导轨式安装

7、IP地址设置连接、ALIBUS系统组网扩容、ALIBUS通讯软件连接

IP辅助电源

IMG_256

ASL200-P20

辅助电源

1、输入电压范围:176-264VAC

2、输出电压及功率:24VDC/20W

3、电压调整范围:21.6~29V

4、工作温度:-40~+70℃

5、外形尺寸:96.6mm(W)*70mm(H)*18mm(D)

6、35mm标准导轨式安装

5.3能源管理系统

应用场景

型号

图 片

保护功能

能耗管理云平台

AcrelCloud-5000

采用泛在物联、云计算、大数据、移动通讯、智能传感等技术手段可为用户提供能源数据采集、统计分析、能效分析、用能预警、设备管理等服务,平台可以广泛应用于多种领域。

智能网关

Anet系列网管

采用嵌入式硬件计算机平台,具有多个下行通信接口及一个或者多个上行网络接口,作为信息采集系统中采集终端与平台系统间的桥梁,能够根据不同的采集规约进行水表、气表、电表、微机保护等设备终端的数据采集汇总,并使用相应的规约转发现场设备的数据给平台系统。

高压重要回路或低压进线柜

APM810

具有全电量测量,电能统计,电能质量分析及网络通讯等功能,主要用于对电网供电质量的综合监控诊断及电能管理。该系列仪表采用了模块化设计,当客户需要增加开关量输入输出,模拟量输入输出,SD卡记录,以太网通讯时,只需在背部插入对应模块即可。

APM520

三相全电量测量,2-63次谐波,不平衡度,需量,支持付费率,越限报警,SOE,4-20mA输出。

低压联络柜、
出线柜

AEM96

三相多功能电能表,均集成三相电力参数测量及电能计量及考核管理,提供上24时、上31日以及上12月的电能数据统计。具有63次分次谐波与总谐波含量检测,带有开关量输入和继电器输出可实现“遥信”和“遥控”功能,并具备报警输出,可广泛应用于多种控制系统,SCADA系统和能源管理系统中。

动力柜

ACR120EL

测量所有的常用电力参数,如三相电流、电压,有功、无功功率,电度,谐波等,并具备完善的通信联网功能,非常适合于实时电力监控系统。

DTSD1352

DIN35mm导轨式安装结构,体积小巧,能测量电能及其他电参量,可进行时钟、费率时段等参数设置,精度高、可靠性好、性能指标符合国标GB/T17215-2002、GB/T17883-1999和电力行业标准DL/T614-2007对电能表的各项技术要求,并且具有电能脉冲输出功能;可用RS485通讯接口与上位机实现数据交换。

AEW100

三相全电量测量,剩余电流、2-63次谐波,支持付费率,量值、电缆温度,可选2G/4G通讯。

5.4智慧消防系统

5.4.1电气火灾监控系统

应用场景

产品

型号

功能

各变电所、各动力箱

0.4KV出线

C:\docu<ems></ems>ments and Settings\Administrator\桌面\1457501z.jpg

ARCM200

系列

用于检测TN-C-S、TN-S及局部TT系统中的剩余电流、温度等电气参数,从而预防电气火灾的发生。

区域

变电所

区域分机

Acrel-6000/B3

接收电气火灾监控探测器信号,实现对被保护电气线路的报警、监视、控制与管理,采用485通讯

主变点所

监控中心

控制主机

Acrel-6000B(XP版)正面左视

Acrel-6000/B

接收电气火灾监控探测器信号和各区域分机数据,实现对被保护电气线路的报警、监视、控制与管理,可采用485通讯。

配套附件

       

0.4kV电流

互感器

1a4efe71171dfcca7c113d94745d16e

AKH-0.66

测量型互感器,采集交流电流信号。

5.4.2消防设备电源监控系统

应用场景

产品

型号

功能

消防设备电源电压监控

图片1(2)

AFPM3-2AVM

监测两路三相交流电压,二总线通讯。

区域

变电所

区域分机

AFPM100/B3

接收消防设备电源监控探测器信号,实现对被保护电气线路的报警、监视、控制与管理,可采用二总线通讯。

主变点所

监控中心

控制主机

Acrel-6000B(XP版)正面左视

AFPM100/B1

接收消防设备电源监控探测器信号和各区域分机数据,实现对被保护电气线路的报警、监视、控制与管理,可采用二总线通讯。

5.4.3防火门监控系统

应用场景

产品

型号

功能

配电室、综合楼

常开防火门

电动闭门器3.jpg

AFRD-CK(YT)-65

AFRD-CK(YT)-85

AFRD-CK(YT)-120

监测常开防火门的开闭状态。

常闭防火门

D:\WinEIM\users\682\temp\dfa0e266.png

单扇:AFRD-CB1(YT)

双扇:AFRD-CB2(YT)

监测常闭防火门的开闭状态。

地下箱体防爆车间

常开/常闭

防火门

AFRD-MC

监测常开、常闭防火门的开闭状态。

监测模块

AFRD-CK/CB

接收AFRD-MC的状态信息同步传输至防火门监控主机。

区域

变电所

区域分机

AFRD100/B3

接收防火门监控模块和防火门一体式探测器的信号,实现对防火门开闭状态的报警、监视、控制与管理,采用二总线通讯。

主变点所

监控中心

控制主机

Acrel-6000B(XP版)正面左视

AFRD100/B

接收防火门监控模块和防火门一体式探测器的信号以及各区域分机的实时数据,实现对防火门开闭状态的报警、监视、控制与管理,采用二总线通讯。

6结束语

以“5G+智能化”为基础路线,通过物联网、大数据建立高校绿色智慧能源管控模型,构建一套适合校园能耗特征的能源电力管理系统,对高校绿色学校创新和低碳模式探索具有深远意义。一是大力推进校园节能降碳改造,特别是整体性和系统性改造,将科研和供能系统的实际运行相结合,通过大数据分析和实时监控,开展能效诊断,优化能源供用方案,为推动校园发展全面绿色转型贡献智慧和力量;二是高校可以充分利用有利条件积极大力弘扬绿色低碳文化,引导师生自觉做绿色低碳技术的创新者、绿色低碳生活的践行者;三是创造高校节能降碳领域人才培养实践环境,为实现双碳目标发挥大的人才培养作用。

综上,高校能源电力转型,需要加强能源电力管理和数字技术的融合力度,综合运用物联网、云计算、AI人工智能等数字化手段,提升生产运营效率和综合管控水平,以数据+平台+应用,加速高校能源电力管理数字化进程,为实现碳达峰、碳中和目标助力,为发展新经济赋智赋能。

【参考文献】

【1】尹霞,王筱琲,李晓,李炳森.基5G技术的高校物联网能源电力管理平台的研究应用[J]国网信息通信产业集团有限公司.2023(12):52-60.

【2】英荷壳牌石油公司《BP世界能源统计年鉴》编辑部.BP世界能源统计年鉴(2021年版)[R].伦敦:英荷壳牌石油公司,2021.

【3】高校综合能效解决方案2022.5版.

【4】企业微电网设计与应用手册2022.05版.